Coral reef ecosystems have suffered an unprecedented loss of habitat-forming hard corals in recent decades, due to increased nutrient outputs from agriculture, elevated levels of suspended sediment caused by deforestation and development, destructive fishing practices,
over-harvesting of reef species, outbreaks of corallivorous crown-of-thorns starfish (COTS, Acanthaster planci), coral disease and tropical storms. However, in recent years climate change has emerged as the primary threat to coral reefs. While reefs have a natural capacity
for recovery, recurring events like mass coral bleaching and extreme weather events is increasing in frequency, intensity and severity, and are eroding the time for recovery between catastrophic events.
Marine conservation has primarily focused on passive habitat protection over active restoration, in contrast to terrestrial ecosystems where active restoration is common practice. Further, active restoration is well accepted for wetlands and shellfish reefs however coral reef restoration has remained controversial both in academia and amongst marine managers. This is despite recent research suggesting that optimal conservation outcomes include both habitat protection and restoration. Critics often argue that coral restoration detracts focus from mitigating climate change and other threats to the marine environment, while proponents of coral restoration counter that interventions can serve to protect coral biodiversity and endangered species in the short-term, while mitigation of large-scale threats such as climate change and water quality take effect. Despite this disconnect between coral restoration practitioners, coral reef managers and scientists, active coral restoration is increasingly used as a tool to attempt to restore coral populations.
The field has largely developed through independent work of isolated groups, and has fallen victim to ‘growing pains’ associated with ecological restoration in many other ecosystems. Partly this is due to a reluctance to share outcomes of projects, and in some cases a lack of monitoring or appropriate reporting of project outcomes. To mitigate this, we aimed to synthesise the available knowledge in a comprehensive global review of coral restoration methods, incorporating data from a traditional literature search of the scientific literature, complemented with information gathered from online sources and through a survey of coral restoration practitioners.
We identified 329 case studies on coral restoration, of which 195 were from the scientific literature, 79 were sourced from the grey literature (i.e. reports and online descriptions), and 55 were responses to our survey of restoration practitioners. We identified ten coral restoration intervention types: coral gardening – transplantation phase (23% of records), direct transplantation (21%), artificial reefs (19%), coral gardening – nursery phase (17%), coral gardening (both phases, 7%), substrate enhancement with electricity (4%), substrate stabilisation (4%), algae removal (2%), larval enhancement (1%) and microfragmentation (<1%). The majority of interventions involve coral fragmentation or transplantation of coral fragments (70%). While 52 countries are represented in the dataset, the majority of projects were conducted in the USA, Philippines, Thailand and Indonesia (together representing 40% of projects).
Coral restoration case studies are dominated by short-term projects, with 66% of all projects reporting less than 18 months of monitoring of the restored sites. Overall, the median length of projects was 12 months. Similarly, most projects are relatively small in spatial scale, with a median size of restored area of 500 m2. A diverse range of species are represented in the dataset, with 221 different species from 89 coral genera. Overall, coral restoration projects focused primarily (65% of studies) on fast-growing branching corals. Among all the published documents, the top five species (22% of studies) were Acropora cervicornis, Pocillopora damicornis, Stylophora pistillata, Porites cylindrica and Acropora palmata. Over a quarter of projects (26%) involved the coral genus Acropora, while 9% of studies included a single species – Acropora cervicornis. Much of the focus on Acropora cervicornis and Acropora palmata is likely to have resulted from these important reef-forming species being listed as threatened on the United States Endangered Species List and as Endangered on the International Union for Conservation of Nature Red List of Endangered Species (IUCN 2018).
Back